Creativity & Problem-Solving

The Laboratory for Innovation Science at Harvard (LISH) is conducting research and creating evidence-based approaches to problem-solving. Researchers at LISH are identifying the best way to approach a problem, starting with problem formulation, and experimenting with solvers on the best way to find solutions.

Key Questions

Question

How does the nature of the problem to be solved impact the most optimal problem-solving approaches to be used?

Question

How can problems be best formulated so that outsiders can help solve them?

Question

How does diversity in knowledge and skills impact problem-solving?

Question

Can creativity be enhanced through teams and/or exposure to peers?

 

These four research questions frame projects in this track, pushing the boundaries of medical imaging and computational biology through artificial intelligence and algorithm development, extensive crowdsourcing work with NASA and other federal agencies, and using data science to help create a history of the partition of British India. See below for more information on each of the individual projects in this research track.

Related Publications

Karim R. Lakhani and Akiko Kanno. 2017. Weathernews. Harvard Business School Case. Harvard Business School. Publisher's VersionAbstract

Tomohiro Ishibashi (Bashi), chief executive officer for B to S, and Julia Foote LeStage, chief innovation officer of Weathernews Inc., were addressing a panel at the HBS Digital Summit on creative uses of big data. They told the summit attendees about how the Sakura (cherry blossoms) Project, where the company asked users in Japan to report about how cherry blossoms were blooming near them day by day, had opened up opportunities for the company's consumer business in Japan. The project ultimately garnered positive publicity and became a foothold to building the company's crowdsourcing weather-forecasting service in Japan. It changed the face of weather forecasting in Japan. Bashi and LeStage wondered whether the experience could be applied to the U.S. market.

Karim R. Lakhani, Andrew Hill, Po-Ru Loh, Ragu B. Bharadwaj, Pascal Pons, Jingbo Shang, Eva C. Guinan, Iain Kilty, and Scott Jelinsky. 2017. “Stepwise Distributed Open Innovation Contests for Software Development: Acceleration of Genome-Wide Association Analysis.” GigaScience, 6, 5, Pp. 1-10. Publisher's VersionAbstract

BACKGROUND: The association of differing genotypes with disease-related phenotypic traits offers great potential to both help identify new therapeutic targets and support stratification of patients who would gain the greatest benefit from specific drug classes. Development of low-cost genotyping and sequencing has made collecting large-scale genotyping data routine in population and therapeutic intervention studies. In addition, a range of new technologies is being used to capture numerous new and complex phenotypic descriptors. As a result, genotype and phenotype datasets have grown exponentially. Genome-wide association studies associate genotypes and phenotypes using methods such as logistic regression. As existing tools for association analysis limit the efficiency by which value can be extracted from increasing volumes of data, there is a pressing need for new software tools that can accelerate association analyses on large genotype-phenotype datasets.

RESULTS: Using open innovation (OI) and contest-based crowdsourcing, the logistic regression analysis in a leading, community-standard genetics software package (PLINK 1.07) was substantially accelerated. OI allowed us to do this in <6 months by providing rapid access to highly skilled programmers with specialized, difficult-to-find skill sets. Through a crowd-based contest a combination of computational, numeric, and algorithmic approaches was identified that accelerated the logistic regression in PLINK 1.07 by 18- to 45-fold. Combining contest-derived logistic regression code with coarse-grained parallelization, multithreading, and associated changes to data initialization code further developed through distributed innovation, we achieved an end-to-end speedup of 591-fold for a data set size of 6678 subjects by 645 863 variants, compared to PLINK 1.07's logistic regression. This represents a reduction in run time from 4.8 hours to 29 seconds. Accelerated logistic regression code developed in this project has been incorporated into the PLINK2 project.

CONCLUSIONS: Using iterative competition-based OI, we have developed a new, faster implementation of logistic regression for genome-wide association studies analysis. We present lessons learned and recommendations on running a successful OI process for bioinformatics.

Christoph Riedl, Richard Zanibbi, Marti A. Hearst, Siyu Zhu, Michael Menietti, Jason Crusan, Ivan Metelsky, and Karim R. Lakhani. 2016. “Detecting Figures and Part Labels in Patents: Competition-Based Development of Image Processing Algorithms.” International Journal on Document Analysis and Recognition (IJDAR), 19, 2, Pp. 155-172. Publisher's VersionAbstract

Most United States Patent and Trademark Office (USPTO) patent documents contain drawing pages which describe inventions graphically. By convention and by rule, these drawings contain figures and parts that are annotated with numbered labels but not with text. As a result, readers must scan the document to find the description of a given part label. To make progress toward automatic creation of ‘tool-tips’ and hyperlinks from part labels to their associated descriptions, the USPTO hosted a monthlong online competition in which participants developed algorithms to detect figures and diagram part labels. The challenge drew 232 teams of two, of which 70 teams (30 %) submitted solutions. An unusual feature was that each patent was represented by a 300-dpi page scan along with an HTML file containing patent text, allowing integration of text processing and graphics recognition in participant algorithms. The design and performance of the top-5 systems are presented along with a system developed after the competition, illustrating that the winning teams produced near state-of-the-art results under strict time and computation constraints. The first place system used the provided HTML text, obtaining a harmonic mean of recall and precision (F-measure) of 88.57 % for figure region detection, 78.81 % for figure regions with correctly recognized figure titles, and 70.98 % for part label detection and recognition. Data and source code for the top-5 systems are available through the online UCI Machine Learning Repository to support follow-on work by others in the document recognition community.

Dietmar Harhoff and Karim R. Lakhani. 2016. Revolutionizing Innovation: Users, Communities, and Open Innovation. Cambridge, MA: MIT Press. Publisher's VersionAbstract

The last two decades have witnessed an extraordinary growth of new models of managing and organizing the innovation process, which emphasize users over producers. Large parts of the knowledge economy now routinely rely on users, communities, and open innovation approaches to solve important technological and organizational problems. This view of innovation, pioneered by the economist Eric von Hippel, counters the dominant paradigm, which casts the profit-seeking incentives of firms as the main driver of technical change. In a series of influential writings, von Hippel and colleagues found empirical evidence that flatly contradicted the producer-centered model of innovation. Since then, the study of user-driven innovation has continued and expanded, with further empirical exploration of a distributed model of innovation that includes communities and platforms in a variety of contexts and with the development of theory to explain the economic underpinnings of this still emerging paradigm. This volume provides a comprehensive and multidisciplinary view of the field of user and open innovation, reflecting advances in the field over the last several decades.

The contributors—including many colleagues of Eric von Hippel—offer both theoretical and empirical perspectives from such diverse fields as economics, the history of science and technology, law, management, and policy. The empirical contexts for their studies range from household goods to financial services. After discussing the fundamentals of user innovation, the contributors cover communities and innovation; legal aspects of user and community innovation; new roles for user innovators; user interactions with firms; and user innovation in practice, describing experiments, toolkits, and crowdsourcing and crowdfunding.

Karim R. Lakhani. 2015. Innovating with the Crowd. Harvard Business School Case. Harvard Business School. Publisher's VersionAbstract

This note outlines the structure and content of a seven-session module that is designed to introduce students to the fundamentals of innovating with the "crowd." The module has been taught in a second year elective course at the Harvard Business School on "Digital Innovation and Transformation" and is aimed at students that already have an understanding of how to structure an innovation process inside of a company. The module expands the students' innovation toolkit by exposing them to the theory and practice of extending the innovation process to external participants.

Karim R. Lakhani, Anne-Laure Fayard, Natalia Levina, and Greta Friar. 2015. OpenIDEO. Harvard Business School Teaching Notes. Harvard Business School. Publisher's VersionAbstract

Teaching Note for HBS Case 612-066.

The case describes OpenIDEO, an online offshoot of IDEO, one of the world's leading product design firms. OpenIDEO leverages IDEO's innovative design process and an online community to create solutions for social issues. Emphasis is placed on comparing the IDEO and OpenIDEO processes using real-world project examples. For IDEO this includes the redesign of Air New Zealand's long haul flights. For OpenIDEO this includes increasing bone marrow donor registrations and improving personal sanitation in Ghana. In addition, the importance of fostering a collaborative online environment is explored.

  •  
  • 1 of 6
  • »