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Prize-based contests can provide solutions to 
computational biology problems
To the Editor:
Advances in biotechnology have fueled the 
generation of unprecedented quantities 
of data across the life sciences. However, 
finding analysts who can address such ‘big 
data’ problems effectively has become a 
significant research bottleneck. Historically, 
prize-based contests have had striking success 
in attracting unconventional individuals 
who can overcome difficult challenges. To 
determine whether this approach could solve 
a real big-data biologic algorithm problem, we 
used a complex immunogenomics problem 
as the basis for a two-week online contest 
broadcast to participants outside academia 
and biomedical disciplines. Participants in 
our contest produced over 600 submissions 
containing 89 novel computational approaches 
to the problem. Thirty submissions exceeded 
the benchmark performance of the US 
National Institutes of Health’s MegaBLAST. 
The best achieved both greater accuracy and 
speed (1,000 times greater). Here we show the 
potential of using online prize-based contests 
to access individuals without domain-specific 
backgrounds to address big-data challenges in 
the life sciences.

The advent of high-throughput biology 
has resulted in studies that routinely generate 
gigabytes of data. It has been estimated that 
genome data available for analysis will grow 
from petabytes (1015) to exabytes (1018)  
(ref. 1). Finding people with the necessary 
training to analyze big data has become a 
bottleneck in moving from sequencing to 
discovery2. This supply-demand problem 
extends beyond genomics to other life science 
areas3–5 and to many diverse industries. It 
has been projected that by 2018 there will 
be a shortage of approximately 200,000 data 
scientists and 1.5 million other individuals in 
the US economy with sufficient training and 
skills to conceptualize and manage big-data 
analyses6.

In academia and elsewhere, this bottle-
neck is more than just a personnel shortage. 
Available personnel may lack experience with 
the specific approach or techniques required. 

As an alternative to an extensive search to 
identify and contract with potentially suitable 
analysts, prize-based contests7–11 have 
emerged as a novel approach to find solutions 
to challenging problems in settings as diverse 
as industrial R&D, software development and 
internet commerce. Such contests are one part 
of a decade-long trend toward solving science 
problems through large-scale mobilization 
of individuals by what the popular press 
refers to as ‘crowdsourcing’12. In general, 
crowdsourcing has come to imply a strategy 
that relies on external, unaffiliated actors to 
resolve a particular problem. It encompasses 
a range of approaches intended to accomplish 
tasks from rote mechanical to highly 
intellectual problem solving. Strategies can 
enable cooperation and knowledge sharing 
among participants or create competitions; 
may limit entry to specified communities or 
allow universal participation; and may offer 
pecuniary and/or non-pecuniary incentives. 
Lastly, strategies may necessitate creation 
and use of complex infrastructure such as 
specialized scientific gaming websites, or they 
may simply require internet access.

Computational biology has become 
fertile ground for experimentation with 
various crowdsourcing approaches. One 
approach is to transform the problem into 
a game that nonscientists can play without 
substantial knowledge of the underlying 
scientific principles. For example, visual 
representation of molecular interactions 
in the Foldit game format has attracted 
participation by individuals without training 
in molecular biology or biochemistry to solve 
protein structure prediction problems that 
have eluded resolution by systematic, expert 
research programs13–15. Additional tools 
permit players to generate protein-folding 
algorithms, the best of which is equivalent 
to those emerging from academia16. 
Other efforts have focused on soliciting 
solutions from a larger expert community 
by moving questions beyond one laboratory 
or institution. For example, the Critical 
Assessment of Genome Interpretation project 

(CAGI; https://genomeinterpretation.org/) 
focuses on analyses of real data to predict 
biologically relevant information, and 
the CLARITY challenge17 asks scientific 
teams to sequence three patient genomes 
(i.e., teams must have access to sequencing 
infrastructure), identify the variants and 
develop clinical reporting formats.

Over the last ten years, online prize-
based contest platforms have emerged to 
solve specific scientific and computational 
problems for the commercial sector. These 
platforms, with solvers in the range of tens 
to hundreds of thousands, have achieved 
considerable success by exposing thousands of 
problems to larger numbers of heterogeneous 
problem-solvers and by appealing to a wide 
range of motivations to exert effort and create 
innovative solutions18,19. The large number 
of entrants in prize-based contests increases 
the probability that an ‘extreme-value’ (or 
maximally performing) solution can be found 
through multiple independent trials; this is 
also known as a parallel-search process19. In 
contrast to traditional approaches, in which 
experts are predefined and preselected, 
contest participants self-select to address 
problems and typically have diverse 
knowledge, skills and experience that would 
be virtually impossible to duplicate locally18. 
Thus, the contest sponsor can identify an 
appropriate solution by allowing many 
individuals to participate and observing the 
best performance. This is particularly useful 
for highly uncertain innovation problems 
in which prediction of the best solver or 
approach may be difficult and the best person 
to solve one problem may be unsuitable for 
another19.

The prize-based contest approach 
used here differs from other academic 
crowdsourcing efforts in multiple ways: (i) it 
uses an existing commercial platform with 
a built-in membership base of computer-
science solvers able to immediately attack the 
problem and able to deliver submissions in 
the multiple hundreds, as compared to tens 
for the Dialogue on Reverse Engineering 
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Assessment and Methods (DREAM)20 
project and CLARITY; (ii) sponsors do not 
need to develop specialized problem-solving 
infrastructure (for example, online games 
interfaces); (iii) it is generalizable to any life 
sciences problem that can be translated into 
generic computer-science terms (in contrast, 
Foldit, for example, is specifically designed 
to address spatial protein-folding problems); 
and (iv) it delivers working algorithms rapidly 
(weeks from launch). Yet it remains to be 
determined whether academic biomedicine 
problems are amenable to solving via these 
ready-made platforms.

Therefore, we experimented with the 
application of a prize-based contest to solve 
a data-rich biological problem related to 
immune repertoire profiling, in which short, 
recombined and mutated stretches of genetic 
sequence had to be annotated according to 
their constituent gene components5,21–23. 
The specificity of immune cells for particular 
antigens depends on which antibodies B cells 
secrete and which T cell receptors (TCRs)  
T cells express, which in turn depends on the 
sequence of their antibody or TCR genes. 
Unlike other genes, those for antibodies and 
TCRs are not encoded as single genes. Instead, 
they are built up combinatorially in each cell 
from gene segments; thus each new cell can 
have a gene with a different DNA sequence24. 
Diversity is increased further by insertion 
or deletion of nucleotides at the junctions 
(joins) between segments, by mutation in 
the resulting gene, and/or by combinatorial 
pairing of the encoded protein product. Thus 
a relatively small number of gene segments 
(<100 for antibody heavy chains in humans) 
can lead to an extraordinary number of 
different molecules (~1030). An obligate 
step toward making sense of this diversity 
is annotating sequence according to which 
gene segments contribute to each recombined 
gene. This exercise is particularly challenging 
because the segments are often short, and 
recombined genes routinely have numerous 
insertions, deletions and substitutions 
(mutations).

Our goal in the prize contest was the 
creation of an algorithmic solution with 
better performance characteristics than 
sequence-annotation approaches using 
established methods such as BLAST25 or 
IMGT/V-QUEST26. As a typical sequencing 
run for these genes produces on the order 
of 105 sequences5,21–23, we sought solutions 
that could annotate this many sequences, 
with at least comparable accuracy to existing 
solutions, in much less time, which we defined 
as ≤30 s on an off-the-shelf desktop computer 
with ≥1GB memory.

Three crucial steps were taken to transform 
the highly domain-specific immunogenomics 
problem into a challenge that would be of 
interest and attractive to non–life science 
solvers. First, we rephrased our problem in 
generic terminology: given 105 strings (gene 
sequences), each generated as the union of 
three substrings (gene segments; one from 
each of three sets A, B and C of known 
substrings), with multi-letter (polynucleotide) 
insertions and deletions at the junctions and 
substitutions in the final string, write and 
implement an algorithm that determines the 
original three substrings that contributed 
to each string. This produced a problem 
statement devoid of biological concepts 
and presented an information-theory and 
string-processing task that a computational 
expert could tackle. The crucial element was 
removal of all context-specific information 
and requirements for using existing, preferred 
approaches so that solvers with heterogeneous 
backgrounds had the freedom to apply their 
own diverse perspectives and heuristics to 
create their solutions27. 

Second, we assembled the required test data 
for solution generation and scoring. Standard 
practice in this contest platform is to generate 
three independent test suites: a public training 
set for contestants, a private set to enable 
real-time algorithm evaluation by contestants, 
and, to prevent over-fitting, a private set for 
scoring of final submissions by the contest 
administrators. Our test sets used all known 
antibody heavy-chain V, D and J gene  
segments and the nucleotide insertion, 
deletion and substitution (mutation) 
frequencies observed in actual antibody 
heavy-chain sequences5. The development 
of test suites requires considerable care as 
contestants will carefully examine the data’s 
nuances and characteristics, and artifacts in 
the data that may be spuriously correlated 
with results will be discovered and probably 
exploited for competitive advantage. 

Third, we devised a scoring metric 
that supported our goal of achieving both 
improved accuracy and computational 
efficiency (speed), and we disclosed this metric 
and its components to the contestants. The 
score was the only metric used to award prizes. 
All information made available to participants 
is detailed in Supplementary Notes.

We ran our contest on the TopCoder.com 
online programming competition website, a 
commercial platform that had the advantage 
of providing us with an existing community 
of solvers. Established in 2001, TopCoder 
currently has a community of over 400,000 
software developers who compete regularly to 
solve programming challenges13. Our contest 

ran for two weeks and offered a $6,000 prize 
pool, with top-ranking players receiving cash 
prizes of up to $500 each week. Our challenge 
drew 733 participants, of whom 122 (17%) 
submitted software code. This group of 
submitters, drawn from 69 countries, were 
roughly half (44%) professionals, with the 
remainder being students at various levels. 
Most participants were between 18 and 44 
years old. None were academic or industrial 
computational biologists, and only five 
described themselves as coming from either 
R&D or life sciences in any capacity.

Consistent with usual practices in 
algorithm and software development contests, 
participants were able to make multiple code 
submissions to enable testing of solutions 
and participant learning and improvement. 
Collectively, participants submitted  
654 solutions, averaging to 5.4 submissions per 
participant. Participants reported spending an 
average of 22 h each developing solutions, for 
a total of 2,684 h of development time. Final 
submissions that received cash awards are 
available for download under an open source 
license (see Supplementary Notes).

Apart from the use of test suites to rank-
order the solutions, we also evaluated the 
accuracy and speed of each participant’s 
final submission by testing it on an in silico 
set of 105 antibody heavy-chain sequences 
(using the same seed sequences as in the 
contest test suite) on a desktop computer 
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Figure 1  Accuracy score plotted against speed of 
contest-commissioned immunoglobulin sequence 
annotation code. Shown are the accuracy 
and speed (computational time) of 70 final 
submissions (top ten in red circles; remainder in 
unfilled circles), MegaBLAST (triangle) and  
in-house code (square) processing 100,000  
in silico–generated recombined VDJ sequences.
Accuracy score is the fraction of gene segment 
annotations that matched the corresponding gene 
segments used in generating the sequence. Note 
that because the sequence contains mutations, 
the best annotation might differ from the segment 
used, resulting in a maximum possible accuracy 
of <1.0.
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(2009 iMac Intel Core i5 2.66 GHz with 8GB 
RAM; Fig. 1). We tested these submissions 
directly against existing industry-standard 
algorithmic solutions. An approach based on 
the US National Center for Biotechnology 
Information’s MegaBLAST (Fig. 1, black 
triangle) and our coauthor’s (R.A.A.)  
custom annotation software, idAb (Fig. 1,  
green square), served as benchmarks 
(Supplementary Methods)5. 

Sixteen of the 122 submissions 
outperformed the accuracy (77%) of the 
idAb solution, and 30 outperformed the 
MegaBLAST benchmark for accuracy (72%). 
Furthermore, eight submissions achieved an 
80% accuracy score, which is very near the 
theoretical maximum for the data set. The 
remaining error corresponds to sequences that 
cannot be correctly annotated, owing to either 

removal of D-segment sequence, truncation or 
mutation (Supplementary Methods).

There was also a notable improvement 
in speed over both benchmark algorithms. 
Submissions that were at least as accurate as 
the benchmarks ran, on average, 30 times 
faster than idAb on an expanded test suite 
of 1 million sequences (average of 89 s, 
compared with 2,845 s for idAB) and 175 
times faster than MegaBLAST (15,623 s). 
The three fastest submissions ran in  
16 s—178 times faster than idAb and nearly 
1,000 times faster than MegaBLAST. Like 
idAb and MegaBLAST, algorithms from 

these top performers have run times that 
scale linearly with the number of sequences. 
Thus, these submissions can annotate 10 
million sequences in under three minutes 
and nearly a quarter-billion sequences 
per hour on a typical desktop machine, 
demonstrating their potential to scale 
with constantly improving sequencing 
technologies.

To investigate the specific technical 
approaches developed by contestants, we 
commissioned three independent computer 
science Ph.D. researchers to review all 
submissions and determine what techniques 
were implemented. Their analyses determined 
that ten distinct elemental methods (Table 1)  
were used in 89 combinations in the 654 
submissions. As the number of elemental 
methods in a submission increased, so did 
its performance (Fig. 2 and Supplementary 
Methods), with leaderboard scores 
increasing by 85.3 points for each additional 
method employed (P < 0.01). Analysis of 
the benchmark algorithms showed that 
the methods numbered 2, 3, 5 and 8 were 
implemented in the MegaBLAST algorithm, 
and methods 2, 4 and 7 were implemented in 
the idAb code.

Thus, the results achieved by contest 
participants in only 14 d improved 
substantially on the existing solutions 
available to academic researchers, decreasing 
processing time by up to three orders of 
magnitude with accuracy reaching the 
theoretical maximum. Moreover, 30 different 
solutions improved upon the state of the art 
exemplified by both an off-the-shelf, general-
purpose tool widely used by the academic 
community (MegaBLAST) and software 
developed by a single team addressing the 
identical problem (idAb), suggesting that 
prize contests are a robust, reliable approach 
to efficiently generate desired solutions. 

Table 1  Elemental techniques used (in combinations) by contestant participants
Method Description

1 Filtering by ungapped alignment score (Hamming distance):
Compare the query string against strings from sets A, B and/or C, trying various possible offsets.

2 Filtering by comparing frequencies of hashed chunks:
For both the query string and strings from A, B and/or C, move a sliding window across the string 
and make a frequency table of the chunks that appear in the window, optionally after hashing 
the chunks. Select the best match(es) between the frequency table obtained from the query and 
those from the corpus.

3 Dynamic programming:
Compute the actual Levenshtein distance between a portion of the query and strings from sets 
A, B and/or C.

4 Dynamic programming extended to more than one section (A, B, C) at once:
Extend the dynamic programming Levenshtein distance computation to find the optimal edit 
distance between (a portion of) the query and all possible A+B, B+C or A+B+C combinations.

5 Bit optimizations:
Use bitwise arithmetic to operate on multiple characters at a time.

6 SSE optimizations:
Use Streaming SIMD Extensions (a CPU instruction set enabling single-instruction multiple-data 
(SIMD) parallelization) to process up to 16 characters or strings at once.

7 Refinement of choices after finding initial solution:
As a post-processing step, hold two of the three selections fixed and reoptimize the third.

8 Fast approximation of edit distance in well-matched regions:
Use restricted dynamic programming, Hamming distance or variants thereof to speed up the 
computation.

9 Precomputation of statistics on the string corpus:
Perform offline analysis of the provided sets A, B and C, and use the data obtained for decision 
making in the algorithm.

10 Explicitly prefer shorter B strings:
In heuristic approaches, give bonuses to shorter strings from set B (which empirically have 
greater likelihood of producing high scores).

–1
0

–5
0

5
P

ro
b

le
m

-s
ol

vi
ng

 s
co

re

0 2 4 6 8 10
Number of elemental t echniques used

All submissions Locally weighted mean regression
Top 10  nal submissions

Figure 2  Solution quality plotted against number 
of techniques. The unit of observation is the 
individual submission (654 solution submissions 
by 122 submitters). The problem-solving score 
is an amalgam of solution quality and time-to-
execute used to generate the leaderboard results 
during the contest (details in Supplementary 
Methods). The curve is a locally weighted 
polynomial fitted curve. All scores have been 
monotonically transformed to accentuate small 
differences among top scores. Positions have 
been slightly ‘jittered’ to facilitate viewing of 
overlapping data points.
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and collected data. R.A.A. identified and codeveloped 
the immunogenomics problem, tested the 
submissions and helped write the manuscript.  
M.L. and L.B. codeveloped the problem statement 
and test data. P.-R.L. analyzed and categorized all 
submission data and helped write the manuscript.
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Although the solvers were virtually devoid 
of domain-specific knowledge, abstracting 
the problem into general algorithmic and 
mathematical terms allowed a wide range of 
nondomain experts to address an important, 
complex problem. These contestants brought 
to the problem whatever skills and expertise 
they had or could find, probably yielding a far 
more diverse toolkit than would be available 
locally, and generated substantial diversity in 
technical approaches. Accessing such diversity 
may be particularly important, as big-data 
biomedical analytics is a rapidly evolving field 
in which it is difficult to know a priori the 
kind, quality and breadth of expertise needed 
to produce an effective solution.

In summary, we show that a prize-
based contest on a commercial platform 
can effectively recruit skilled individuals 
to apply their knowledge to a big-data 
biomedical problem. Deconstruction 
and transformation of problems for a 
heterogeneous solver community coupled 
with adequate data to produce and validate 
results can support solution diversity and 
minimize the risk of suboptimal solutions 
that may arise from limited searches. In 
addition to the benefits of generating new 
knowledge, this strategy may be particularly 
useful in situations where the computational 
or algorithmic problem, or potentially any 
science problem, represents a barrier to rapid 
progress but where finding the solution is 
not itself the major thrust of the investigator’s 
scientific effort. The America Competes Act 
passed by the US Congress provides funding 
agencies with the authority to administer 
their own prize-based contests and paves 
the way for establishing how grant recipients 
might access commercial prize platforms to 
accelerate their own research.

Note: Supplementary information is available at http://
www.nature.com/doifinder/10.1038/nbt.2495.
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To the Editor:
Maize expressing different versions 
of Bacillus thuringiensis toxins (Bt), 5 
enolphyruvylshikimate-3 phosphate synthase 
(EPSPS) and phosphinothricin acetyl 
transferase alone or in combination are part of 
the current wave of agricultural technological 
change. We analyzed grain yield data from 
annual field experiments during 1990-2010 
in Wisconsin to test hypotheses that maize 
expressing these transgenic traits alone or in 
combination (stacked) has greater productivity 
(as measured by the mean harvested yield) 
and lower production risk (as measured by the 
variance, skewness and kurtosis of harvested 
yield). Compared with conventional hybrids, 
the impact of transgenic traits (both single 
and stacked traits) on mean yield ranges from 
-12.2 to +6.5 bushels per acre. This shows that 
reducing yield risk is an important source of 
benefits of transgenic technology, especially 
for stacked traits. These benefits are estimated 
to be equivalent to a yield increase of  

0.8-4.2 bushels per acre. We found evidence 
for gene interactions (‘yield drag’ and ‘event 
lag’ effects) that can reduce yield.

The past century has seen marked increases 
in maize productivity. Average US maize yields 
increased from 72 to 153 bushels per acre from 
1970 to 2010 (ref. 1). Genetic selection has 
contributed to advances in maize productivity 
in recent decades2,3. Over the past 15 years, 
productivity gains have been complemented 
by rapid adoption of transgenic hybrids in 
the United States (and elsewhere)2,3. Rapid 
adoption of transgenic maize by US farmers 
suggests that the technology benefits them. Yet 
documenting the nature and sources of these 
benefits has been challenging4,5. There is some 
evidence of delayed yield increase due to ‘yield 
lag’ and yield drag associated with transgenes5. 
Agricultural production is also subject to 
substantial risk from unpredictable weather 
and pest damage. Transgenic crops have been 
argued to help reduce agricultural production 
risk, thus motivating insurance companies to 

Commercialized transgenic traits, 
maize productivity and yield risk
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