Crowdsourcing & Open Innovation

Working Paper
Jana Gallus, Olivia S. Jung, and Karim R. Lakhani. Working Paper. “Managerial Recognition as an Incentive for Innovation Platform Engagement: A Field Experiment and Interview Study at NASA.” HBS Working Paper Series. Publisher's Version 20-059.pdf
Philip Brookins, Dmitry Ryvkin, and Andrew Smyth. 3/8/2021. “Indefinitely repeated contests: An experimental study.” Experimental Economics . Publisher's VersionAbstract
We experimentally explore indefinitely repeated contests. Theory predicts more cooperation, in the form of lower expenditures, in indefinitely repeated contests with a longer expected time horizon. Our data support this prediction, although this result attenuates with contest experience. Theory also predicts more cooperation in indefinitely repeated contests compared to finitely repeated contests of the same expected length, and we find empirical support for this. Finally, theory predicts no difference in cooperation across indefinitely repeated winner-take-all and proportional-prize contests, yet we find evidence of less cooperation in the latter, though only in longer treatments with more contests played. Our paper extends the experimental literature on indefinitely repeated games to contests and, more generally, contributes to an infant empirical literature on behavior in indefinitely repeated games with “large” strategy spaces.
Brookins - Indefinitely Repeated Contests
Philip Brookins and Paan Jindapon. 2/20/2021. “Risk preference heterogeneity in group contests.” Journal of Mathematical Economics. Publisher's VersionAbstract
We analyze the first model of a group contest with players that are heterogeneous in their risk preferences. In our model, individuals’ preferences are represented by a utility function exhibiting a generalized form of constant absolute risk aversion, allowing us to consider any combination of risk-averse, risk-neutral, and risk-loving players. We begin by proving equilibrium existence and uniqueness under both linear and convex investment costs. Then, we explore how the sorting of a compatible set of players by their risk attitudes into competing groups affects aggregate investment. With linear costs, a balanced sorting (i.e., minimizing the variance in risk attitudes across groups) always produces an aggregate investment level that is at least as high as an unbalanced sorting (i.e., maximizing the variance in risk attitudes across groups). Under convex costs, however, identifying which sorting is optimal is more nuanced and depends on preference and cost parameters.
Brookins - Risk Preference Heterogeneity
Karim R. Lakhani, Anne-Laure Fayard, Manos Gkeredakis, and Jin Hyun Paik. 10/5/2020. “OpenIDEO (B)”. Publisher's VersionAbstract
In the midst of 2020, as the coronavirus pandemic was unfolding, OpenIDEO - an online open innovation platform focused on design-driven solutions to social issues - rapidly launched a new challenge to improve access to health information, empower communities to stay safe during the COVID-19 crisis, and inspire global leaders to communicate effectively. OpenIDEO was particularly suited to challenges which required cross-system or sector-wide collaboration due to its focus on social impact and ecosystem design, but its leadership pondered how they could continue to improve virtual collaboration and to share their insights from nearly a decade of running online challenges. Conceived as an exercise of disruptive digital innovation, OpenIDEO successfully created a strong open innovation community, but how could they sustain - or even improve - their support to community members and increase the social impact of their online challenges in the coming years?
Jin Paik, Martin Schöll, Rinat Sergeev, Steven Randazzo, and Karim R. Lakhani. 2/26/2020. “Innovation Contests for High-Tech Procurement.” Research-Technology Management, 63:2, 36-45. Publisher's VersionAbstract
Innovation managers rarely use crowdsourcing as an innovative instrument despite extensive academic and theoretical research. The lack of tools available to compare and measure crowdsourcing, specifically contests, against traditional methods of procuring goods and services is one barrier to adoption. Using ethnographic research to understand how managers solved their problems, we find that the crowdsourcing model produces higher costs in the framing phase but yields savings in the solving phase, whereas traditional procurement is downstream cost-intensive. Two case study examples with the National Aeronautics and Space Agency (NASA) and the United States Department of Energy demonstrate a potential total cost savings of 27 percent and 33 percent, respectively, using innovation contests. We provide a comprehensive evaluation framework for crowdsourcing contests developed from a high-tech industry perspective, which are applicable to other industries.
Andrea Blasco, Michael G. Endres, Rinat A. Sergeev, Anup Jonchhe, Max Macaluso, Rajiv Narayan, Ted Natoli, Jin H. Paik, Bryan Briney, Chunlei Wu, Andrew I. Su, Aravind Subramanian, and Karim R. Lakhani. 9/2019. “Advancing Computational Biology and Bioinformatics Research Through Open Innovation Competitions.” PLOS One, 14, 9. Publisher's VersionAbstract
Open data science and algorithm development competitions over a unique avenue for rapid discovery of better computational strategies. We highlight three examples in computational biology and bioinformatics research where the use of competitions has yielded significant performance gains over established algorithms. These include algorithms for antibody clustering, imputing gene expression data, and querying the Connectivity Map (CMap). Performance gains are evaluated quantitatively using realistic, albeit sanitized, data sets. The solutions produced through these competitions are then examined with respect to their utility and the prospects for implementation in the field. We present the decision process and competition design considerations that lead to these successful outcomes as a model for researchers who want to use competitions and non-domain crowds as collaborators to further their research.
Elizabeth E. Richard, Jeffrey R. Davis, Jin H. Paik, and Karim R. Lakhani. 4/25/2019. “Sustaining open innovation through a “Center of Excellence”.” Strategy & Leadership. Publisher's VersionAbstract

This paper presents NASA’s experience using a Center of Excellence (CoE) to scale and sustain an open innovation program as an effective problem-solving tool and includes strategic management recommendations for other organizations based on lessons learned.

This paper defines four phases of implementing an open innovation program: Learn, Pilot, Scale and Sustain. It provides guidance on the time required for each phase and recommendations for how to utilize a CoE to succeed. Recommendations are based upon the experience of NASA’s Human Health and Performance Directorate, and experience at the Laboratory for Innovation Science at Harvard running hundreds of challenges with research and development organizations.

Lessons learned include the importance of grounding innovation initiatives in the business strategy, assessing the portfolio of work to select problems most amenable to solving via crowdsourcing methodology, framing problems that external parties can solve, thinking strategically about early wins, selecting the right platforms, developing criteria for evaluation, and advancing a culture of innovation. Establishing a CoE provides an effective infrastructure to address both technical and cultural issues.

The NASA experience spanned more than seven years from initial learnings about open innovation concepts to the successful scaling and sustaining of an open innovation program; this paper provides recommendations on how to decrease this timeline to three years.

Raymond H. Mak, Michael G. Endres, Jin H. Paik, Rinat A. Sergeev, Hugo Aerts, Christopher L. Williams, Karim R. Lakhani, and Eva C. Guinan. 4/18/2019. “Use of Crowd Innovation to Develop an Artificial Intelligence–Based Solution for Radiation Therapy Targeting.” JAMA Oncology, 5, 5, Pp. 654-661. Publisher's VersionAbstract

Radiation therapy (RT) is a critical cancer treatment, but the existing radiation oncologist work force does not meet growing global demand. One key physician task in RT planning involves tumor segmentation for targeting, which requires substantial training and is subject to significant interobserver variation.

To determine whether crowd innovation could be used to rapidly produce artificial intelligence (AI) solutions that replicate the accuracy of an expert radiation oncologist in segmenting lung tumors for RT targeting.

We conducted a 10-week, prize-based, online, 3-phase challenge (prizes totaled $55 000). A well-curated data set, including computed tomographic (CT) scans and lung tumor segmentations generated by an expert for clinical care, was used for the contest (CT scans from 461 patients; median 157 images per scan; 77 942 images in total; 8144 images with tumor present). Contestants were provided a training set of 229 CT scans with accompanying expert contours to develop their algorithms and given feedback on their performance throughout the contest, including from the expert clinician.

Main Outcomes and Measures  The AI algorithms generated by contestants were automatically scored on an independent data set that was withheld from contestants, and performance ranked using quantitative metrics that evaluated overlap of each algorithm’s automated segmentations with the expert’s segmentations. Performance was further benchmarked against human expert interobserver and intraobserver variation.

A total of 564 contestants from 62 countries registered for this challenge, and 34 (6%) submitted algorithms. The automated segmentations produced by the top 5 AI algorithms, when combined using an ensemble model, had an accuracy (Dice coefficient = 0.79) that was within the benchmark of mean interobserver variation measured between 6 human experts. For phase 1, the top 7 algorithms had average custom segmentation scores (S scores) on the holdout data set ranging from 0.15 to 0.38, and suboptimal performance using relative measures of error. The average S scores for phase 2 increased to 0.53 to 0.57, with a similar improvement in other performance metrics. In phase 3, performance of the top algorithm increased by an additional 9%. Combining the top 5 algorithms from phase 2 and phase 3 using an ensemble model, yielded an additional 9% to 12% improvement in performance with a final S score reaching 0.68.

A combined crowd innovation and AI approach rapidly produced automated algorithms that replicated the skills of a highly trained physician for a critical task in radiation therapy. These AI algorithms could improve cancer care globally by transferring the skills of expert clinicians to under-resourced health care settings.

Andrea Blasco, Olivia S. Jung, Karim R. Lakhani, and Michael E. Menietti. 4/2019. “Incentives for Public Goods Inside Organizations: Field Experimental Evidence.” Journal of Economic Behavior & Organization, 160, Pp. 214-229. Publisher's VersionAbstract

We report results of a natural field experiment conducted at a medical organization that sought contribution of public goods (i.e., projects for organizational improvement) from its 1200 employees. Offering a prize for winning submissions boosted participation by 85 percent without affecting the quality of the submissions. The effect was consistent across gender and job type. We posit that the allure of a prize, in combination with mission-oriented preferences, drove participation. Using a simple model, we estimate that these preferences explain about a third of the magnitude of the effect. We also find that these results were sensitive to the solicited person’s gender.

Michael Menietti, M.P. Recalde, and L. Vesterlund. 2018. “Charitable Giving in the Laboratory: Advantages of the Piecewise Linear Public Good Game.” In The Economics of Philanthropy: Donations and Fundraising, edited by Mirco Tonin and Kimberley Scharf. MIT Press. Publisher's Version
Luke Boosey, Philip Brookins, and Dmitry Ryvkin. 2018. “Contests between groups of unknown size.” Games and Economic Behavior. Publisher's VersionAbstract
We study group contests where group sizes are stochastic and unobservable to participants at the time of investment. When the joint distribution of group sizes is symmetric, with expected group size , the symmetric equilibrium aggregate investment is lower than in a symmetric group contest with commonly known fixed group size . A similar result holds for two groups with asymmetric distributions of sizes. For the symmetric case, the reduction in individual and aggregate investment due to group size uncertainty increases with the variance in relative group impacts. When group sizes are independent conditional on a common shock, a stochastic increase in the common shock mitigates the effect of group size uncertainty unless the common and idiosyncratic components of group size are strong complements. Finally, group size uncertainty undermines the robustness of the group size paradox otherwise present in the model.
Herman B. Leonard, Mitchell B. Weiss, Jin H. Paik, and Kerry Herman. 2018. SOFWERX: Innovation at U.S. Special Operations Command. Harvard Business School Case. Harvard Business School. Publisher's VersionAbstract
James “Hondo” Geurts, the Acquisition Executive for U.S. Special Operations Command was in the middle of his Senate confirmation hearing in 2017 to become Assistant Secretary of the Navy for Research, Development and Acquisition. The questions had a common theme: how would Geurts’s experience running an innovative procurement effort for U.S. Special Forces units enable him to change a much larger—and much more rigid—organization like the U.S. Navy? In one of the most secretive parts of the U.S. military, Geurts founded an open platform called SOFWERX to speed the rate of ideas to Navy SEALs, Army Special Forces, and the like. His team even sourced the idea for a hoverboard from a YouTube video. But how should things like SOFWERX and protypes like the EZ-Fly find a place within the Navy writ large?
Philip Brookins, John P. Lightle, and Dmitry Ryvkin. 2018. “Sorting and communication in weak-link group contests.” Journal of Economic Behavior & Organization, 152, Pp. 64-80. Publisher's VersionAbstract
We experimentally study the effects of sorting and communication in contests between groups of heterogeneous players whose within-group efforts are perfect complements. Contrary to the common wisdom that competitive balance bolsters performance in contests, in this setting theory predicts that aggregate output increases in the variation in abilities between groups, i.e., it is maximized by the most unbalanced sorting of players. However, the data does not support this prediction. In the absence of communication, we find no effect of sorting on aggregate output, while in the presence of within-group communication aggregate output is 33% higher under the balanced sorting as compared to the unbalanced sorting. This reversal of the prediction is in line with the competitive balance heuristic. The results have implications for the design of optimal groups in organizations using relative performance pay.
Teppo Felin, Karim R. Lakhani, and Michael L. Tushman. 2017. “Firms, Crowds, and Innovation.” Strategic Organization, 15:2, Special Issue on Organizing Crowds and Innovation, Pp. 119-140. Publisher's VersionAbstract

The purpose of this article is to suggest a (preliminary) taxonomy and research agenda for the topic of “firms, crowds, and innovation” and to provide an introduction to the associated special issue. We specifically discuss how various crowd-related phenomena and practices—for example, crowdsourcing, crowdfunding, user innovation, and peer production—relate to theories of the firm, with particular attention on “sociality” in firms and markets. We first briefly review extant theories of the firm and then discuss three theoretical aspects of sociality related to crowds in the context of strategy, organizations, and innovation: (1) the functions of sociality (sociality as extension of rationality, sociality as sensing and signaling, sociality as matching and identity); (2) the forms of sociality (independent/aggregate and interacting/emergent forms of sociality); and (3) the failures of sociality (misattribution and misapplication). We conclude with an outline of future research directions and introduce the special issue papers and essays.

Olivia Jung, Andrea Blasco, and Karim R. Lakhani. 2017. “Perceived Organizational Support For Learning and Contribution to Improvement by Frontline Staff.” Academy of Management Proceedings, 2017, 1. Publisher's VersionAbstract

Utilizing suggestions from clinicians and administrative staff is associated with process and quality improvement, organizational climate that promotes patient safety, and added capacity for learning. However, realizing improvement through innovative ideas from staff depends on their ability and decision to contribute. We hypothesized that staff perception of whether the organization promotes learning is positively associated with their likelihood to engage in problem solving and speaking up. We conducted our study in a cardiology unit in an academic hospital that hosted an ideation contest that solicited frontline staff to suggest ideas to resolve issues encountered at work. Our primary dependent variable was staff participation in ideation. The independent variables measuring perception of support for learning were collected using the validated 27-item Learning Organization Survey (LOS). To examine the relationships between these variables, we used analysis of variance, logistic regression, and predicted probabilities. We also interviewed 16 contest participants to explain our quantitative results. The study sample consisted of 30% of cardiology unit staff (n=354) that completed the LOS. In total, 72 staff submitted 138 ideas, addressing a range of issues including patient experience, cost of care, workflow, utilization, and access. Figuring out the cost of procedures in the catheterization laboratory and creating a smartphone application that aids patients to navigate through appointments and connect with providers were two of the ideas that won the most number of votes and funding to be implemented in the following year. Participation in ideation was positively associated with staff perception of supportive learning environment. For example, one standard deviation increase in perceived welcome for differences in opinions was associated with a 43% increase in the odds of participating in ideation (OR=1.43, p=0.04) and 55% increase in the odds of suggesting more than one idea (OR=1.55, p=0.09). Experimentation, a practice that supports learning, was negatively associated with ideation (OR=0.36, p=0.02), and leadership that reinforces learning was not associated with ideation. The perception that new ideas are not sufficiently considered or experimented could have motivated staff to participate, as the ideation contest enables experimentation and learning. Interviews with ideation participants revealed that the contest enabled systematic bottom-up contribution to quality improvement, promoted a sense of community, facilitated organizational exchange of ideas, and spread a problem-solving oriented mindset. Enabling frontline staff to feel that their ideas are welcome and that making mistakes is permissible may increase their likelihood to engage in problem solving and speaking up, contributing to organizational improvement.

Karim R. Lakhani, Andrew Hill, Po-Ru Loh, Ragu B. Bharadwaj, Pascal Pons, Jingbo Shang, Eva C. Guinan, Iain Kilty, and Scott Jelinsky. 2017. “Stepwise Distributed Open Innovation Contests for Software Development: Acceleration of Genome-Wide Association Analysis.” GigaScience, 6, 5, Pp. 1-10. Publisher's VersionAbstract

BACKGROUND: The association of differing genotypes with disease-related phenotypic traits offers great potential to both help identify new therapeutic targets and support stratification of patients who would gain the greatest benefit from specific drug classes. Development of low-cost genotyping and sequencing has made collecting large-scale genotyping data routine in population and therapeutic intervention studies. In addition, a range of new technologies is being used to capture numerous new and complex phenotypic descriptors. As a result, genotype and phenotype datasets have grown exponentially. Genome-wide association studies associate genotypes and phenotypes using methods such as logistic regression. As existing tools for association analysis limit the efficiency by which value can be extracted from increasing volumes of data, there is a pressing need for new software tools that can accelerate association analyses on large genotype-phenotype datasets.

RESULTS: Using open innovation (OI) and contest-based crowdsourcing, the logistic regression analysis in a leading, community-standard genetics software package (PLINK 1.07) was substantially accelerated. OI allowed us to do this in <6 months by providing rapid access to highly skilled programmers with specialized, difficult-to-find skill sets. Through a crowd-based contest a combination of computational, numeric, and algorithmic approaches was identified that accelerated the logistic regression in PLINK 1.07 by 18- to 45-fold. Combining contest-derived logistic regression code with coarse-grained parallelization, multithreading, and associated changes to data initialization code further developed through distributed innovation, we achieved an end-to-end speedup of 591-fold for a data set size of 6678 subjects by 645 863 variants, compared to PLINK 1.07's logistic regression. This represents a reduction in run time from 4.8 hours to 29 seconds. Accelerated logistic regression code developed in this project has been incorporated into the PLINK2 project.

CONCLUSIONS: Using iterative competition-based OI, we have developed a new, faster implementation of logistic regression for genome-wide association studies analysis. We present lessons learned and recommendations on running a successful OI process for bioinformatics.

Karim R. Lakhani and Akiko Kanno. 2017. Weathernews. Harvard Business School Case. Harvard Business School. Publisher's VersionAbstract

Tomohiro Ishibashi (Bashi), chief executive officer for B to S, and Julia Foote LeStage, chief innovation officer of Weathernews Inc., were addressing a panel at the HBS Digital Summit on creative uses of big data. They told the summit attendees about how the Sakura (cherry blossoms) Project, where the company asked users in Japan to report about how cherry blossoms were blooming near them day by day, had opened up opportunities for the company's consumer business in Japan. The project ultimately garnered positive publicity and became a foothold to building the company's crowdsourcing weather-forecasting service in Japan. It changed the face of weather forecasting in Japan. Bashi and LeStage wondered whether the experience could be applied to the U.S. market.

Christoph Riedl, Richard Zanibbi, Marti A. Hearst, Siyu Zhu, Michael Menietti, Jason Crusan, Ivan Metelsky, and Karim R. Lakhani. 2016. “Detecting Figures and Part Labels in Patents: Competition-Based Development of Image Processing Algorithms.” International Journal on Document Analysis and Recognition (IJDAR), 19, 2, Pp. 155-172. Publisher's VersionAbstract

Most United States Patent and Trademark Office (USPTO) patent documents contain drawing pages which describe inventions graphically. By convention and by rule, these drawings contain figures and parts that are annotated with numbered labels but not with text. As a result, readers must scan the document to find the description of a given part label. To make progress toward automatic creation of ‘tool-tips’ and hyperlinks from part labels to their associated descriptions, the USPTO hosted a monthlong online competition in which participants developed algorithms to detect figures and diagram part labels. The challenge drew 232 teams of two, of which 70 teams (30 %) submitted solutions. An unusual feature was that each patent was represented by a 300-dpi page scan along with an HTML file containing patent text, allowing integration of text processing and graphics recognition in participant algorithms. The design and performance of the top-5 systems are presented along with a system developed after the competition, illustrating that the winning teams produced near state-of-the-art results under strict time and computation constraints. The first place system used the provided HTML text, obtaining a harmonic mean of recall and precision (F-measure) of 88.57 % for figure region detection, 78.81 % for figure regions with correctly recognized figure titles, and 70.98 % for part label detection and recognition. Data and source code for the top-5 systems are available through the online UCI Machine Learning Repository to support follow-on work by others in the document recognition community.

Kevin J. Boudreau and Karim R. Lakhani. 2016. “Innovation Experiments: Researching Technical Advance, Knowledge Production, and the Design of Supporting Institutions.” In Innovation Policy and the Economy, 16: Pp. 135-167. Chicago, IL. Publisher's VersionAbstract

This paper discusses several challenges in designing field experiments to better understand how organizational and institutional design shapes innovation outcomes and the production of knowledge. We proceed to describe the field experimental research program carried out by our Crowd Innovation Laboratory at Harvard University to clarify how we have attempted to address these research design challenges. This program has simultaneously solved important practical innovation problems for partner organizations, like NASA and Harvard Medical School (HMS), while contributing research advances, particularly in relation to innovation contests and tournaments. We conclude by proceeding to highlight the opportunity for the scholarly community to develop a “science of innovation” that utilized field experiments as means to generate knowledge.

Andrea Blasco, Olivia S. Jung, Karim R. Lakhani, and Michael Menietti. 2016. Motivating Effort in Contributing to Public Goods Inside Organizations: Field Experimental Evidence. National Bureau of Economic Research. Publisher's VersionAbstract

We investigate the factors driving workers’ decisions to generate public goods inside an organization through a randomized solicitation of workplace improvement proposals in a medical center with 1200 employees. We find that pecuniary incentives, such as winning a prize, generate a threefold increase in participation compared to non-pecuniary incentives alone, such as prestige or recognition. Participation is also increased by a solicitation appealing to improving the workplace. However, emphasizing the patient mission of the organization led to countervailing effects on participation. Overall, these results are consistent with workers having multiple underlying motivations to contribute to public goods inside the organization consisting of a combination of pecuniary and altruistic incentives associated with the mission of the organization.