Incentives & Governance

2020
Roberto Verganti, Luca Vendraminelli, and Marco Iansiti. 3/19/2020. “Innovation and Design in the Age of Artificial Intelligence”. Publisher's VersionAbstract

At the heart of any innovation process lies a fundamental practice: the way people create ideas and solve problems. This “decision making” side of innovation is what scholars and practitioners refer to as “design”. Decisions in innovation processes have so far been taken by humans. What happens when they can be substituted by machines? Artificial Intelligence (AI) brings data and algorithms to the core of innovation processes. What are the implications of this diffusion of AI for our understanding of design and innovation? Is AI just another digital technology that, akin to many others, will not significantly question what we know about design? Or will it create transformations in design that current theoretical frameworks cannot capture?

This article proposes a framework for understanding design and innovation in the age of AI. We discuss the implications for design and innovation theory. Specifically, we observe that, as creative problem solving is significantly conducted by algorithms, human design increasingly becomes an activity of sense making, i.e. understanding which problems should or could be addressed. This shift in focus calls for new theories and brings design closer to leadership, which is, inherently, an activity of sense making.

Our insights are derived from and illustrated with two cases at the frontier of AI ‐‐ Netflix and AirBnB (complemented with analyses in Microsoft and Tesla) ‐‐, which point to two directions for the evolution of design and innovation in firms. First, AI enables an organization to overcome many past limitations of human‐intensive design processes, by improving the scalability of the process, broadening its scope across traditional boundaries, and enhancing its ability to learn and adapt on the fly. Second, and maybe more surprising, while removing these limitations, AI also appears to deeply enact several popular design principles. AI thus reinforces the principles of Design Thinking, namely: being people‐centered, abductive, and iterative. In fact, AI enables the creation of solutions that are more highly user‐centered than human‐based approaches (i.e., to an extreme level of granularity, designed for every single person); that are potentially more creative; and that are continuously updated through learning iterations across the entire product life cycle.

In sum, while AI does not undermine the basic principles of design, it profoundly changes the practice of design. Problem solving tasks, traditionally carried out by designers, are now automated into learning loops that operate without limitations of volume and speed. The algorithms embedded in these loops think in a radically different way than a designer who handles complex problems holistically with a systemic perspective. Algorithms instead handle complexity through very simple tasks, which are iterated continuously. This article discusses the implications of these insights for design and innovation management scholars and practitioners.

Marco Iansiti and Karim R. Lakhani. 3/3/2020. “From Disruption to Collision: The New Competitive Dynamics.” MIT Sloan Management Review.Abstract
In the age of AI, traditional businesses across the economy are being attacked by highly scalable data-driven companies whose operating models leverage network effects to deliver value.
2019
Andrea Blasco, Olivia S. Jung, Karim R. Lakhani, and Michael E. Menietti. 4/2019. “Incentives for Public Goods Inside Organizations: Field Experimental Evidence.” Journal of Economic Behavior & Organization, 160, Pp. 214-229. Publisher's VersionAbstract

We report results of a natural field experiment conducted at a medical organization that sought contribution of public goods (i.e., projects for organizational improvement) from its 1200 employees. Offering a prize for winning submissions boosted participation by 85 percent without affecting the quality of the submissions. The effect was consistent across gender and job type. We posit that the allure of a prize, in combination with mission-oriented preferences, drove participation. Using a simple model, we estimate that these preferences explain about a third of the magnitude of the effect. We also find that these results were sensitive to the solicited person’s gender.

Incentives_for_Public_Goods_Inside_Orgs.pdf
2017
Teppo Felin, Karim R. Lakhani, and Michael L. Tushman. 2017. “Firms, Crowds, and Innovation.” Strategic Organization, 15:2, Special Issue on Organizing Crowds and Innovation, Pp. 119-140. Publisher's VersionAbstract

The purpose of this article is to suggest a (preliminary) taxonomy and research agenda for the topic of “firms, crowds, and innovation” and to provide an introduction to the associated special issue. We specifically discuss how various crowd-related phenomena and practices—for example, crowdsourcing, crowdfunding, user innovation, and peer production—relate to theories of the firm, with particular attention on “sociality” in firms and markets. We first briefly review extant theories of the firm and then discuss three theoretical aspects of sociality related to crowds in the context of strategy, organizations, and innovation: (1) the functions of sociality (sociality as extension of rationality, sociality as sensing and signaling, sociality as matching and identity); (2) the forms of sociality (independent/aggregate and interacting/emergent forms of sociality); and (3) the failures of sociality (misattribution and misapplication). We conclude with an outline of future research directions and introduce the special issue papers and essays.

Firms_crowds_and_innovation.pdf
Olivia Jung, Andrea Blasco, and Karim R. Lakhani. 2017. “Perceived Organizational Support For Learning and Contribution to Improvement by Frontline Staff.” Academy of Management Proceedings, 2017, 1. Publisher's VersionAbstract

Utilizing suggestions from clinicians and administrative staff is associated with process and quality improvement, organizational climate that promotes patient safety, and added capacity for learning. However, realizing improvement through innovative ideas from staff depends on their ability and decision to contribute. We hypothesized that staff perception of whether the organization promotes learning is positively associated with their likelihood to engage in problem solving and speaking up. We conducted our study in a cardiology unit in an academic hospital that hosted an ideation contest that solicited frontline staff to suggest ideas to resolve issues encountered at work. Our primary dependent variable was staff participation in ideation. The independent variables measuring perception of support for learning were collected using the validated 27-item Learning Organization Survey (LOS). To examine the relationships between these variables, we used analysis of variance, logistic regression, and predicted probabilities. We also interviewed 16 contest participants to explain our quantitative results. The study sample consisted of 30% of cardiology unit staff (n=354) that completed the LOS. In total, 72 staff submitted 138 ideas, addressing a range of issues including patient experience, cost of care, workflow, utilization, and access. Figuring out the cost of procedures in the catheterization laboratory and creating a smartphone application that aids patients to navigate through appointments and connect with providers were two of the ideas that won the most number of votes and funding to be implemented in the following year. Participation in ideation was positively associated with staff perception of supportive learning environment. For example, one standard deviation increase in perceived welcome for differences in opinions was associated with a 43% increase in the odds of participating in ideation (OR=1.43, p=0.04) and 55% increase in the odds of suggesting more than one idea (OR=1.55, p=0.09). Experimentation, a practice that supports learning, was negatively associated with ideation (OR=0.36, p=0.02), and leadership that reinforces learning was not associated with ideation. The perception that new ideas are not sufficiently considered or experimented could have motivated staff to participate, as the ideation contest enables experimentation and learning. Interviews with ideation participants revealed that the contest enabled systematic bottom-up contribution to quality improvement, promoted a sense of community, facilitated organizational exchange of ideas, and spread a problem-solving oriented mindset. Enabling frontline staff to feel that their ideas are welcome and that making mistakes is permissible may increase their likelihood to engage in problem solving and speaking up, contributing to organizational improvement.

2016
Andrea Blasco, Olivia S. Jung, Karim R. Lakhani, and Michael Menietti. 2016. Motivating Effort in Contributing to Public Goods Inside Organizations: Field Experimental Evidence. National Bureau of Economic Research. Publisher's VersionAbstract

We investigate the factors driving workers’ decisions to generate public goods inside an organization through a randomized solicitation of workplace improvement proposals in a medical center with 1200 employees. We find that pecuniary incentives, such as winning a prize, generate a threefold increase in participation compared to non-pecuniary incentives alone, such as prestige or recognition. Participation is also increased by a solicitation appealing to improving the workplace. However, emphasizing the patient mission of the organization led to countervailing effects on participation. Overall, these results are consistent with workers having multiple underlying motivations to contribute to public goods inside the organization consisting of a combination of pecuniary and altruistic incentives associated with the mission of the organization.

Motivating_Effort_in_Contributing_to_Public_Good_Inside_Organizations.pdf
Kevin J. Boudreau, Karim R. Lakhani, and Michael Menietti. 2016. “Performance Responses to Competition Across Skill-Levels in Rank Order Tournaments: Field Evidence and Implications for Tournament Design.” The RAND Journal of Economics, 47, 1, Pp. 140-165. Publisher's VersionAbstract

Tournaments are widely used in the economy to organize production and innovation. We study individual data on 2775 contestants in 755 software algorithm development contests with random assignment. The performance response to added contestants varies nonmonotonically across contestants of different abilities, precisely conforming to theoretical predictions. Most participants respond negatively, whereas the highest-skilled contestants respond positively. In counterfactual simulations, we interpret a number of tournament design policies (number of competitors, prize allocation and structure, number of divisions, open entry) and assess their effectiveness in shaping optimal tournament outcomes for a designer.

Performance_Responses_to_Competition.pdf
Dietmar Harhoff and Karim R. Lakhani. 2016. Revolutionizing Innovation: Users, Communities, and Open Innovation. Cambridge, MA: MIT Press. Publisher's VersionAbstract

The last two decades have witnessed an extraordinary growth of new models of managing and organizing the innovation process, which emphasize users over producers. Large parts of the knowledge economy now routinely rely on users, communities, and open innovation approaches to solve important technological and organizational problems. This view of innovation, pioneered by the economist Eric von Hippel, counters the dominant paradigm, which casts the profit-seeking incentives of firms as the main driver of technical change. In a series of influential writings, von Hippel and colleagues found empirical evidence that flatly contradicted the producer-centered model of innovation. Since then, the study of user-driven innovation has continued and expanded, with further empirical exploration of a distributed model of innovation that includes communities and platforms in a variety of contexts and with the development of theory to explain the economic underpinnings of this still emerging paradigm. This volume provides a comprehensive and multidisciplinary view of the field of user and open innovation, reflecting advances in the field over the last several decades.

The contributors—including many colleagues of Eric von Hippel—offer both theoretical and empirical perspectives from such diverse fields as economics, the history of science and technology, law, management, and policy. The empirical contexts for their studies range from household goods to financial services. After discussing the fundamentals of user innovation, the contributors cover communities and innovation; legal aspects of user and community innovation; new roles for user innovators; user interactions with firms; and user innovation in practice, describing experiments, toolkits, and crowdsourcing and crowdfunding.

2015
Karim R. Lakhani. 2015. Innovating with the Crowd. Harvard Business School Case. Harvard Business School. Publisher's VersionAbstract

This note outlines the structure and content of a seven-session module that is designed to introduce students to the fundamentals of innovating with the "crowd." The module has been taught in a second year elective course at the Harvard Business School on "Digital Innovation and Transformation" and is aimed at students that already have an understanding of how to structure an innovation process inside of a company. The module expands the students' innovation toolkit by exposing them to the theory and practice of extending the innovation process to external participants.

Kevin J. Boudreau and Karim R. Lakhani. 2015. “'Open' Disclosure of Innovations, Incentives and Follow-on Reuse: Theory on Processes of Cumulative Innovation and a Field Experiment in Computational Biology.” Research Policy, 44, 1, Pp. 4-19. Publisher's VersionAbstract

Most of society's innovation systems – academic science, the patent system, open source, etc. – are “open” in the sense that they are designed to facilitate knowledge disclosure among innovators. An essential difference across innovation systems is whether disclosure is of intermediate progress and solutions or of completed innovations. We theorize and present experimental evidence linking intermediate versus final disclosure to an ‘incentives-versus-reuse’ tradeoff and to a transformation of the innovation search process. We find intermediate disclosure has the advantage of efficiently steering development towards improving existing solution approaches, but also has the effect of limiting experimentation and narrowing technological search. We discuss the comparative advantages of intermediate versus final disclosure policies in fostering innovation.

'Open'_Disclosure_of_Innovations.pdf
Karim R. Lakhani and Greta Friar. 2015. Prodigy Network: Democratizing Real Estate Design and Financing. Harvard Business School Teaching Notes. Harvard Business School. Publisher's VersionAbstract

Teaching Note for HBS Case 614-064.

This case follows Rodrigo Nino, founder and CEO of commercial real estate development company Prodigy Network, as he develops an equity-based crowdfunding model for small investors to access commercial real estate in Colombia, then tries out the model in the U.S. U.S. regulations, starting with the Securities Act of 1933, effectively barred sponsors from soliciting small investors for large commercial real estate. However, the JOBS Act of 2013 loosened U.S. restrictions on equity crowdfunding. Nino believes that crowdfunding will democratize real estate development by providing a new asset class for small investors, revolutionizing the industry. The case also follows Nino's development of an online platform to crowdsource design for his crowdfunded buildings, maximizing shared value throughout the development process. Nino faces many challenges as he attempts to crowdfund an extended stay hotel in Manhattan, New York. For example, crowdfunded real estate faces resistance from industry leaders, especially in regards to the concern of fraud, and SEC regulations on crowdfunding remain undetermined at the time of the case.

Kevin J. Boudreau and Lars B. Jeppesen. 2015. “Unpaid Crowd Complementors: The Platform Network Effect Mirage.” Strategic Management Journal, 36, 12, Pp. 1761-1777. Publisher's VersionAbstract

Platforms have evolved beyond just being organized as multi-sided markets with complementors selling to users. Complementors are often unpaid, working outside of a price system and driven by heterogeneous sources of motivation—which should affect how they respond to platform growth. Does reliance on network effects and strategies to attract large numbers of complementors remain advisable in such contexts? We test hypotheses related to these issues using data from 85 online multi-player game platforms with unpaid complementors. We find that complementor development responds to platform growth even without sales incentives, but that attracting complementors has a net zero effect on on-going development and fails to stimulate network effects. We discuss conditions under which a strategy of using unpaid crowd complementors remains advantageous.

Unpaid_Crowd_Complementors.pdf
2014
Karim R. Lakhani, Katja Hutter, and Greta Friar. 2014. Prodigy Network: Democratizing Real Estate Design and Financing. Harvard Business School Case. Harvard Business School. Publisher's VersionAbstract

This case follows Rodrigo Nino, founder and CEO of commercial real estate development company Prodigy Network, as he develops an equity-based crowdfunding model for small investors to access commercial real estate in Colombia, then tries out the model in the U.S. U.S. regulations, starting with the Securities Act of 1933, effectively barred sponsors from soliciting small investors for large commercial real estate. However, the JOBS Act of 2013 loosened U.S. restrictions on equity crowdfunding. Nino believes that crowdfunding will democratize real estate development by providing a new asset class for small investors, revolutionizing the industry. The case also follows Nino's development of an online platform to crowdsource design for his crowdfunded buildings, maximizing shared value throughout the development process. Nino faces many challenges as he attempts to crowdfund an extended stay hotel in Manhattan, New York. For example, crowdfunded real estate faces resistance from industry leaders, especially in regards to the concern of fraud, and SEC regulations on crowdfunding remain undetermined at the time of the case.

2013
Andrea Blasco, Kevin Boudreau, Karim R. Lakhani, Michael Menietti, and Christoph Riedl. 2013. “Do Crowds Have the Wisdom to Self-Organize?”.Abstract

The “self-organizing” of online crowds — or workers, more generally — into teams is a non-trivial problem of coordination and matching, in a context in which other parties are simultaneously competing for partners. Here, we experimentally investigate the capacity for workers in online crowds to self-organize into teams, within a scientific crowdsourcing contest. We compare matching outcomes and performance to those in a comparison group in which we eliminate the coordination and matching problem altogether (by directly assigning individuals to Pareto efficient teams). Online crowd members do remarkably well relative to the benchmark achieving 13% more functioning teams. Teams also tended to be more effective, by several measures. (We found no evidence these levels depending on the size of the self-organizing pool of workers.) Conditional on having formed, the self-organizing teams also benefit from several advantages in performance.

Andrew King and Karim R. Lakhani. 2013. “Using Open Innovation to Identify the Best Ideas.” MIT Sloan Management Review 55 (1). Publisher's VersionAbstract

As innovation becomes more democratic, many of the best ideas for new products and services no longer originate in well-financed corporate and government laboratories. Instead, they come from almost anywhere and anyone.1 How can companies tap into this distributed knowledge and these diverse skills? Increasingly, organizations are considering using an open-innovation process, but many are finding that making open innovation work can be more complicated than it looks. PepsiCo, the food and beverage giant, for example, created controversy in 2011 when an open-sourced entry into its Super Bowl ad contest that was posted online featured Doritos tortilla chips being used in place of sacramental wafers during Holy Communion. Similarly, Kraft Foods Australia ran into challenges when it launched a new Vegemite-based cheese snack in conjunction with a public naming contest. The name Kraft initially chose from the submissions, iSnack 2.0, encountered widespread ridicule, and Kraft abandoned it. (The company instead asked consumers to choose among six other names. The company ultimately picked the most popular choice among those six, Vegemite Cheesybite.) Reports of such problems have fed uncertainty among managers about how and when to open their innovation processes. Managers tell us that they need a means of categorizing different types of open innovation and a list of key success factors and common problems for each type. Over the last decade, we have worked to create such a guide by studying and researching the emergence of open-innovation systems in numerous sectors of the economy, by working closely with many organizations that have launched open-innovation programs and by running our own experiments.2 This research has allowed us to gain a unique perspective on the opportunities and problems of implementing open-innovation programs. (See “About the Research.”) In every organization and industry, executives were faced with the same decisions. Specifically, they had to determine (1) whether to open the idea-generation process; (2) whether to open the idea-selection process; or (3) whether to open both. These choices led to a number of managerial challenges, and the practices the companies implemented were a major factor in whether the innovation efforts succeeded or failed.

Kevin J. Boudreau and Karim R. Lakhani. 2013. “Using the Crowd as an Innovation Partner.” Harvard Business Review 91 (4), Pp. 61-69. Publisher's VersionAbstract

From Apple to Merck to Wikipedia, more and more organizations are turning to crowds for help in solving their most vexing innovation and research questions, but managers remain understandably cautious. It seems risky and even unnatural to push problems out to vast groups of strangers distributed around the world, particularly for companies built on a history of internal innovation. How can intellectual property be protected? How can a crowdsourced solution be integrated into corporate operations? What about the costs? These concerns are all reasonable, the authors write, but excluding crowdsourcing from the corporate innovation tool kit means losing an opportunity. After a decade of study, they have identified when crowds tend to outperform internal organizations (or not). They outline four ways to tap into crowd-powered problem solving — contests, collaborative communities, complementors, and labor markets — and offer a system for picking the best one in a given situation. Contests, for example, are suited to highly challenging technical, analytical, and scientific problems; design problems; and creative or aesthetic projects. They are akin to running a series of independent experiments that generate multiple solutions—and if those solutions cluster at some extreme, a company can gain insight into where a problem’s “technical frontier” lies. (Internal R&D may generate far less information.)

2012
Kevin J. Boudreau and Karim R. Lakhani. 2012. “The Confederacy of Heterogeneous Software Organizations and Heterogeneous Developers: Field Experimental Evidence on Sorting and Worker Effort.” In The Rate and Direction of Inventive Activity Revisited, edited by Scott Stern and Josh Lerner. Chicago, IL: University of Chicago Press. Publisher's VersionAbstract

This chapter reports on an actual field experiment that tests for the influence of “sorting” on innovator effort. The focus is on the potential heterogeneity among innovators and whether they prefer a more cooperative versus competitive research environment. The focus of the field experiment is a real-world multiday software coding exercise in which participants are able to express a preference for being sorted into a cooperative or competitive environment—that is, incentives in the cooperative environment are team based, while those in the competitive environment are individualized and depend on relative performance. Half of the participants are indeed sorted on the basis of their preferences, while the other half are assigned to the two modes on a random basis.

Confederacy_of_Heterogeneous_Software.pdf
Karim R. Lakhani and Meredith L. Liu. 2012. Innovation at Charlotte-Mecklenburg Schools. Harvard Business School Case. Harvard Business School. Publisher's VersionAbstract

Following its 2011 win of the Broad Prize, the most prestigious award available for urban school districts, Charlotte-Mecklenburg Schools must hire a new superintendent. This case examines the context of a large urban public school district and how its Board of Education and superintendent were able to create an environment that successfully fostered innovation, using a variety of tools including policy, structure, tools, and culture. It explores the particular constraints and barriers of public education and how the district leadership navigated them. Covers issues such as the resistance to innovation in the public sector, the importance of leadership in building a culture of innovation, the use of autonomy and accountability to encourage individual creativity, the difficulty of managing multiple stakeholders, and the challenge of sustaining improvements over changes in leadership.

Kevin J. Boudreau. 2012. “Let a Thousand Flowers Bloom? An Early Look at Large Numbers of Software App Developers and Patterns of Innovation.” Organization Science, 23, 5, Pp. 1409-1427. Publisher's VersionAbstract

In this paper, I study the effect of adding large numbers of producers of application software programs (“apps”) to leading handheld computer platforms, from 1999 to 2004. To isolate causal effects, I exploit changes in the software labor market. Consistent with past theory, I find a tight link between the number of producers on platform and the number of software varieties that were generated. The patterns indicate the link is closely related to the diversity and distinct specializations of producers. Also highlighting the role of heterogeneity and nonrandom entry and sorting, later cohorts generated less compelling software than earlier cohorts. Adding producers to a platform also shaped investment incentives in ways that were consistent with a tension between network effects and competitive crowding, alternately increasing or decreasing innovation incentives depending on whether apps were differentiated or close substitutes. The crowding of similar apps dominated in this case; the average effect of adding producers on innovation incentives was negative. Overall, adding large numbers of producers led innovation to become more dependent on population-level diversity, variation, and experimentation —while drawing less on the heroic efforts of any one individual innovator.

2011
Kevin J. Boudreau, Nicola Lacetera, and Karim R. Lakhani. 2011. “Incentives and Problem Uncertainty in Innovation Contests: An Empirical Analysis.” Management Science, 57, 5, Pp. 843-863. Publisher's VersionAbstract

Contests are a historically important and increasingly popular mechanism for encouraging innovation. A central concern in designing innovation contests is how many competitors to admit. Using a unique data set of 9,661 software contests, we provide evidence of two coexisting and opposing forces that operate when the number of competitors increases. Greater rivalry reduces the incentives of all competitors in a contest to exert effort and make investments. At the same time, adding competitors increases the likelihood that at least one competitor will find an extreme-value solution. We show that the effort-reducing effect of greater rivalry dominates for less uncertain problems, whereas the effect on the extreme value prevails for more uncertain problems. Adding competitors thus systematically increases overall contest performance for high-uncertainty problems. We also find that higher uncertainty reduces the negative effect of added competitors on incentives. Thus, uncertainty and the nature of the problem should be explicitly considered in the design of innovation tournaments. We explore the implications of our findings for the theory and practice of innovation contests.

Pages